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The Lagrangian evolution of two-point velocity and scalar increments in turbulence
is considered, based on the ‘advected delta-vee system’ (Li & Meneveau 2005). This
system has already been used to show that ubiquitous trends of three-dimensional
turbulence such as exponential or stretched exponential tails in the probability density
functions of transverse velocity increments, as well as negatively skewed longitudinal
velocity increments, emerge quite rapidly and naturally from initially Gaussian en-
sembles. In this paper, the approach is extended to provide simple explanations for
other known intermittency trends in turbulence: (i) that transverse velocity increments
tend to be more intermittent than longitudinal ones, (ii) that in two dimensions,
vorticity increments are intermittent while velocity increments are not, (iii) that scalar
increments typically become more intermittent than velocity increments and, finally,
(iv) that velocity increments in four-dimensional turbulence are more intermittent
than in three dimensions. While the origin of these important trends can thus be
elucidated qualitatively, predicting quantitatively the statistically steady-state levels
and dependence on scale remains an open problem that would require including the
neglected effects of pressure, inter-scale interactions and viscosity.

1. Introduction
Intermittency in turbulence refers to the occurrence of rare, but intense fluctuations

of small-scale quantities such as velocity increments, vorticity, strain rate, and scalar
gradients. It is most typically reflected in two well-known phenomenological attributes
of turbulence: (a) non-Gaussian tails in the probability density functions (PDF) of
the small-scale quantities, and (b) anomalous scaling, by which scaling exponents
of the moments of velocity increments deviate significantly from the prediction of
Kolmogorov (1941) (see Frisch 1995). The quantitative prediction of intermittency has
been a long-standing challenge in turbulence research. Much effort has been devoted to
various phenomenological models for scaling of intermittency (for reviews see Frisch
1995; Sreenivasan & Antonia 1997; Yakhot & Sreenivasan 2005). Some of the models
such as multifractal models (Benzi et al. 1984; Meneveau & Sreenivasan 1987; Frisch
1995; Chevillard, Castaing, Leveque & Arneodo 2005) and the log-Poisson model
(She & Leveque 1994) have succeeded in providing good fits to many experimental
results, but in general they make insufficient connection with the dynamical equations.
Progress has also been made in the understanding of toy models, such as shell models
(Biferale 2003) and the Kraichnan model for passive scalars (Falkovich, Gawedzki &
Vergassola 2001), and with efforts to reproduce realistic features of intermittent
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turbulence by the superpositions of certain vortex structures (Pullin & Saffman 1998).
Another related body of work has focused on the geometry of small-scale turbulence
(Ashurst, Kerstein, Kerr & Gibson 1987; Lund & Rogers 1994; Tsinober, Kit &
Dracos 1992). Theoretical insights into these geometric properties have been obtained
from restricted Euler (RE) dynamics (Vieillefosse 1984; Cantwell 1992) through which
important trends (such as preferential alignment of vorticity with the intermediate
strain eigen-direction and the prevalence of axisymmetric expanding motions) can be
explained from the self-stretching and rotation of the velocity gradient tensor during
its Lagrangian evolution (Cantwell 1992; Zeff et al. 2003). Further progress has been
sought by tracking the material deformation as a tool to regularize the finite-time
singularities in RE dynamics (Chertkov, Pumir & Shraiman 1999; Naso & Pumir
2005), and making a direct connection between the geometry and intermittency of
turbulence. Tracking of material element geometry has also been used by Jeong &
Girimaji (2003), in which the Cauchy–Green tensor is used to model the viscous term.

Recently, in Li & Meneveau (2005) (referred to as LM hereafter) the evolution of
the local structure of turbulence has been investigated with the goal of elucidating
fundamental trends towards intermittency without having to follow all the elements of
the velocity gradient tensor. Of the two phenomenological attributes of intermittency
mentioned above, LM only addressed the development of the non-Gaussian tails in
PDFs. The simplest analogy of the LM result is for the inviscid one-dimensional
Burgers equation that describes the free motion of fluid particles (without pressure
nor viscous forces). Defining A ≡ ∂u/∂x, u(x, t) being the velocity, one obtains
∂A/∂t+u∂A/∂x = dA/dt = −A2, which shows that initially negative velocity gradients
become more negative. An initial ensemble of A with Gaussian distribution thus
evolves towards a distribution having a long tail at negative A (Kraichnan 1990).
Assuming that A is constant across a fixed length � and defining a hypothetical
velocity increment across that length as δu ≡ A�, the same equation can also be
written as dδu/dt = δu̇= −δu2/�. In higher dimensions, the situation is more complex
since several velocity components and directions are involved. In LM it was shown
that the specific choice of the longitudinal and the magnitude of the transverse
velocity increments across a fixed distance �, along a direction advected with the flow,
yields a particularly simple system of equations. Specifically, for an incompressible
velocity field ui(x, t) filtered at scale ∆ and velocity gradient Aij ≡ ∂uj/∂xi , consider a
displacement vector r(t), and the unit vector in its direction r̂ = r/r . The longitudinal
and the magnitude of the transverse components of the velocity increment vector
along this direction across a fixed distance � < ∆ are defined as

δu ≡ �Arr ≡ �Aki r̂k r̂i , δv = �|Pij (r)Akj r̂k|, (1.1)

where Arr ≡ Aki r̂k r̂i is the velocity gradient along the direction r̂ , and Pij (r) ≡ δij − r̂i r̂j

is the projection operator. For a detailed sketch illustrating these definitions, see
figure 1 of LM. Starting from the Navier–Stokes equations and omitting the pressure,
viscous as well as subgrid-scale (SGS) forces, it was shown in LM that the Lagrangian
evolution of δu and δv is described by a simple system of equations, δu̇ = (−δu2 +
δv2)/� and δv̇ = −2δuδv/�, called the ‘advected delta-vee system’ (see § 2 for details).
If one defines a complex variable z = δu + iδv, the system can be written simply as
ż = −z2 (as remarked in Galanti, Gibbon & Heritage (1997) in the context of a similar
pair of equations to study the angle between vorticity vector and strain rate tensor).
Similarly to the case of Burgers equation in one dimension, the system contains a
self-amplification term for negative δu, but now the self-amplification is weakened for
large transverse velocities. In the equation for δv, the cross-amplification term suggests
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exponential growth of δv for negative δu. In LM, DNS data were analysed to show
that δu̇ and δv̇ predicted from this model exhibit significant correlations (correlation
coefficients of 0.5–0.6) with their values measured from DNS. Furthermore, starting
from initial Gaussian ensembles, the advected delta-vee system was shown to lead
to the rapid emergence of exponential and stretched exponential tails in the PDFs
of the velocity increments, and skewness for δu. Thus, this heavily truncated system
that neglects the effects of all the forces was already sufficient to reproduce important
trends of intermittency in turbulence, even though, due to the omissions of forces,
no predictions could be made of the quantitative properties in the statistically steady
state.

The insights into important qualitative intermittency trends provided by the
advected delta-vee system motivate further investigation. As a first variant of the
system, we generalize it to N dimensions and include a portion of the isotropic
forces that is deterministically connected to the velocity increments. We also study the
Lagrangian evolution of passive scalar increments and, in two dimensions, vorticity
increments.

2. Advected delta-vee system in N-dimensions with passive scalars
The evolution of the coarse-grained velocity gradient Aij (see § 1) in N dimensions

is

dAij

dt
≡ ∂Aij

∂t
+ um

∂Aij

∂xm

= −
(

AikAkj − 1

N
Dδij

)
+ Hij , (2.1)

in which Hij = −(∂2
ijp−N−1δij ∂

2
kkp)−(∂2

ikτjk −N−1δij ∂
2
lkτlk)+ν∂2

kkAij (with τij ≡ uiuj −
uiuj being SGS stresses) is the anisotropic part of (the gradients of) pressure, SGS and

viscous forces. The term containing D ≡ AmnAnm, which maintains incompressibility,
is the isotropic part. Out of the N2 − 1 independent components of A, the advected
delta-vee system focuses on only two components associated with a direction r̂ that
is advected by the flow. The evolution of r in a locally linear velocity field is given by

ṙi ≡ dri/dt = Ajirj . (2.2)

Taking the time derivative of δu and δv (defined by (1.1)), and using (2.1) and (2.2),
one obtains the following ‘advected delta-vee’ system in N dimensions:

δu̇ = −δu2 �−1 + δv2�−1 + D�N−1 + Y, (2.3)

δv̇ = −2δuδv �−1 + Z, (2.4)

where Y = �Hij r̂i r̂j and Z = �Hij êj r̂i; ê is a unit vector in the direction of the transverse
velocity-increment component, perpendicular to r̂ . The term �D/N in (2.3) was de-
noted as −2Q�/3 in LM for N = 3, with Q ≡ −D/2.

For passive scalars, one begins with the coarse-grained passive scalar field T (x, t).
The evolution of its gradient vector, Gi ≡ ∂T /∂xi , is dGi/dt = −AijGj +Ki , in which

Ki = −∂2
ijΘj + Γ ∂2

jjGi , Θi = uiT −uiT is the SGS scalar flux and Γ the scalar diffusion

coefficient. Defining the scalar increment δT across � along r̂ as δT = �Gkr̂k , its
Lagrangian evolution is obtained by time differentiation δṪ = −δT δu�−1 + W , where
W = �Kir̂i . In two-dimensional turbulence the equation for the non-zero vorticity
component ω is the same as that for a passive scalar. Thus the equation for vorticity
increments, δω = �r̂i∂iω, has the same form as for δT , but with W = Wω = �ν∂2

kk(∂iω)r̂i−
�r̂i∂

2
ij (ujω − ujω).
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The equations for δu̇, δv̇, δṪ and δω̇ are not closed. In LM, it was shown that (2.3)
and (2.4) with D = Y =Z = 0 were already sufficient to display important intermittency
trends. Now we take into account that of the various terms that compose D, two may
be expressed as a function of Arr , or δu. To show this with N = 3, the tensor elements
of A are written in a local coordinate system defined by r̂ , ê and n̂ = r̂ × ê:

A =

⎡
⎢⎣

Arr Are Arn

Aer Aee Aen

Anr Ane −(Arr + Aee)

⎤
⎥⎦ (2.5)

in which Arr ≡ Aij r̂i r̂j = δu/�, Are ≡ Aij r̂i êj = δv/�. Also Arn =0 since the velocity
increment vector has no component in the n̂-direction, as a consequence of the

definition of ê. Expressed in this frame, D = 2A
2

rr + D− = 2δu2/�2 +D−, where 2A
2

rr

comes from the squares of the first and the third diagonal components of A (as
written in (2.5)). D− contains other terms in which Arr and Are (or δu and δv) appear
as first powers, none of which is in closed form in the advected delta-vee system.
Substituting D with this decomposition and neglecting X, Y , W , Wω, and D−, one
obtains

δu̇ = −(1 − 2/N)δu2�−1 + δv2�−1, (2.6)

δv̇ = −2δuδv�−1, (2.7)

δṪ = −δuδT �−1, (2.8)

δω̇ = −δuδω�−1, (2.9)

in which the last equation will be considered when N =2 only. Note that another
option to impose the divergence-free condition in (2.5) is to distribute Arr among
all remaining diagonal elements equally, i.e. with Arr , Aee − Arr/2 and −Aee − Arr/2
on the diagonal (for the N = 3 case). The prefactor in (2.6) would then change from
(N − 2)/N to (N − 2)/(N − 1), but resulting trends discussed in the following are not
affected.

Equation (2.6) differs from the one in LM in that the first term on the right-hand
side of (2.6), the self-amplification of negative δu, is weakened by the newly included
portion of the pressure and SGS forces contained in D. In their discussion of condi-
tional pressure gradient statistics, Gotoh & Nakano (2003) have also argued that
the effects of pressure gradient could be modelled by a term proportional to the
square of local velocity increment, to oppose the formation of Burgers-equation-like
shocks. Equation (2.6) shows the cancellation is stronger for smaller N , and when
N = 2 the self-amplification term is fully eliminated. Since the self-amplification term
is responsible for generating negative skewness in the PDF of δu, this also leading
to large fluctuation in δv via the cross-amplification mechanism represented by the
right-hand side of (2.7) (when δu < 0), we expect both the negative skewness in the
PDF of δu and the intermittency in δv to develop less rapidly at lower N , and perhaps
to be absent when N = 2. We have also examined for N =3 the correlation between
δu̇ modelled by (2.6) and its DNS value in the same way as in LM, finding that the
correlation coefficient is almost unchanged and remains near 0.5. Equations (2.8) and
(2.9) show that the intermittency in passive scalar increments and in vorticity incre-
ments (when N = 2) is generated by a similar cross-amplification mechanism as for the
transverse velocity increment. However, as will be shown in § 3, the inherent correla-
tions that develop between δu and δv differ from those between δu and δT (or δω).
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3. Numerical experiments and discussions
In this section the system (2.6)–(2.9) is used to predict the evolution starting from

random Gaussian initial conditions. The initial distributions of the increments δu,
δT and δω are taken as independent Gaussian with unit variance, while those for
increment δv for N = 2, 3, 4 are, respectively, distributions for the magnitude of a one-,
two- and three-dimensional vector with Gaussian components and unit variance. This
initial ensemble could be interpreted as increments in randomly chosen directions
(uniformly distributed on the N -dimensional sphere, with uniform distribution of
initial solid angles, dΩ0), in an N -dimensional Gaussian vector field. When the system
evolves in time, the evolving directions will tend to align with expanding eigen-
directions of A, and statistics over the evolving ensemble will no longer correspond to
statistics taken over random directions. In order to compare model results with data
that are taken at random directions not correlated with the dynamics, the model results
need to be weighted with the evolving measure. Conservation of fluid volume implies
that �NdΩ0 = r(t)NdΩ(t), e.g. in directions of growing r(t), the solid angle dΩ(t)
decreases. Thus, probabilities must be weighted by dΩ(t)/dΩ0 = [�/r(t)]N . Solving for
r(t) from dr/dt = rδu/� with r(0) = �, one obtains

dΩ(t)/dΩ0 = exp

(
−N�−1

∫ t

0

δu(t ′) dt ′
)

. (3.1)

Numerically, each sample associated with an initial condition is multiplied by the
factor (equation (3.1)) using r(t) obtained for any particular initial condition.

Another issue concerns the status of δv as the magnitude of velocity increments,
rather than a particular component as is usually reported in the literature. For
example, δv = (δv2

c + δv2
d)

1/2 when N = 3, where δvc and δvd are two orthogonal com-
ponents in the plane perpendicular to r(t). As in LM, to obtain δvc from δv, it is
assumed that the transverse velocity increment vector is at a random angle with
respect to a chosen transverse coordinate direction c. This assumption is justified
since the displacement vector r does not have a preferred orientation with respect
to a fixed frame. Then it can be shown that δvc = p δv, where p equals 1 or −1
with equal probabilities when N =2. When N =3, p = cos θ where θ is distributed
uniformly in [0, 2π). p is uniformly distributed in [−1, 1] when N = 4. Let P c

v and Pv

be the PDFs of δvc and δv, then

P c
v (δvc) =

1

2
[Pv(δvc) + Pv(−δvc)],

∫ +∞

|δvc |

Pv(δv) dδv

π
√

δv2 − δv2
c

,

∫ +∞

|δvc |

Pv(δv)

2δv
dδv (3.2)

in two, three and four-dimensional spaces, respectively.
Without loss of generality we set � = 1. An ensemble consisting of 3 × 109 realiza-

tions is computed. The equations are integrated numerically with a fifth-order
Cash–Karp Runge–Kutta scheme with adaptive stepsize control (Press, Teukolsky,
Vetterling & Flannery 1992). The tolerance level is set to 10−4. The PDFs are calculated
by sampling within an interval [−16, 16]. The interval is divided into M = 100 bins. P c

v

is calculated using a numerical integration scheme combining the extended midpoint
rule and Romberg integration (Press et al. 1992), with Pv approximated by linear
interpolation. The upper limit of the integrals is set to the upper limit of the sampling
interval, namely 16. The moments of a random variable X are calculated according
to equation 〈Xn〉 =

∑M

i=1 Xn
i Pih, where Pi is the value of the PDF of X at Xi , h is the

width of the bins.
Shown in figure 1 are the PDFs for velocity increments δu and δvc at several times

for N = 3, to be compared with the results in LM (for N = ∞). Compared with LM,
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Figure 1. The PDFs of (a) δu and (b) δvc in three dimensions calculated from the advected
delta-vee system. Dotted lines: Gaussian, solid: t = 0.06, dashed: 0.12, dash-dotted: 0.18,
dash-double-dotted: 0.24, long dashed: 0.30 and long dash-dotted: 0.36.
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Figure 2. As figure 1 but for N = 2.

the evolution of the PDFs is slower due to the cancellation from the retained deter-
ministic terms in D, but the qualitative trends remain the same. There still is rapid
development of negative skewness of the PDFs for δu, and the exponential tails in
the PDFs for δvc. Remarkably, for N =2, the PDFs for δu calculated from the
model are nearly identical to Gaussian (figure 2a). The PDFs for δvc, shown in
figure 2(b), develop tails that are slightly wider than Gaussian, but at no time do
they stretch sufficiently to approach exponential. The absence of non-Gaussian tails
in two dimensional turbulence is in general agreement with DNS and experimental
observations (Paret & Tabeling 1998; Boffeta, Celani & Vergassola 2000). The PDFs
for the velocity increments for N =4 are shown in figure 3. Compared to those for
N = 3, the tails are wider at any given instant, consistent with the DNS results reported
recently by Suzuki et al. (2005), in which they found the intermittency of velocity
increments is stronger in four dimensional turbulence than in three dimensional
one. PDFs of δvc for different N are compared in figure 4(a) at t = 0.24, which
clearly shows that the tails are wider at higher N . We also compare in figure 4 the
skewness of δu, S(δu) ≡ 〈(δu − 〈δu〉)3〉/〈(δu − 〈δu〉)2〉3/2, and the flatness F (X) ≡ 〈(X −
〈X〉)4〉/〈(X − 〈X〉)2〉2 for X = δu and δvc. For N = 2, the skewness and flatness factor
of δu remain at their initial Gaussian values, clearly showing that no intermittency
develops in δu. As for δvc, the PDFs show no exponential tails, whereas the flatness
does increase above the Gaussian value F = 3. As is evident in figure 2(b), the
deviation from the Gaussian value is not caused by exponential tails but by slight
deformation of the PDFs. For N =3, we observe that F (δu) remains significantly
smaller than F (δvc), consistent with the trend for unfiltered velocity gradients in DNS
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Figure 3. As figure 1 but for N = 4.
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Figure 4. (a) Comparison of the PDFs of δvc at t = 0.24 in two (solid line), three (dashed)
and four dimensions (dash-dotted). (b–d) Time evolution of the skewness for δu, the flatness
factors of δu and δvc respectively. Legend same as (a).

(Gotoh, Fukayama & Nakano 2002) that consistently shows stronger intermittency
of transverse velocity increments compared to longitudinal ones. The same trend is
also observed for N = 4. The lower intermittency in δu compared to δvc is due to
the (−2/N) term that causes cancellation of self-stretching due to incompressibility,
whereas no such term occurs in the transverse direction. Figure 4(b) shows that the
skewness is also higher for N = 4 than for N = 3, consistent with the results of Suzuki
et al. (2005). As mentioned before, the system cannot tend to a steady state due to the
omission of several force terms. Thus the skewness grows significantly below −0.5 (or
−0.3 ∼ −0.4 in the inertial range, see Cerutti, Meneveau & Knio (2000)). For N = 3,
when the skewness crosses through −0.5 at about t = 0.24, we note from figure 4 that
F (δu) ≈ 3.5 and F (δvc) ≈ 4.0.
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Figure 5. Trajectories in (δu, δv) phase space for (a) N = 2, (b) N = 3 and (c) N = 4.
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Figure 6. (a) Comparison of the PDFs of δT with δvc in three dimensions. Solid lines: δT ,
dashed: δvc . Along the arrow: t = 0.12, 0.18 and 0.24. (b) Evolution of PDFs of δω in two
dimensions. Legend same as figure 1. (c) Evolution of the flatness factor of δT for N = 2 (solid
line), 3 (dashed) and 4 (dash-dotted).

The basic trends in the PDFs can be understood from the invariant of (2.6) and
(2.7), which is found to be U = [δu2 +N (N +2)−1δv2]δv2/N−1. In LM (where N = ∞) it
was argued that the δv−1 factor is responsible for the subsequent rapid growth of δv

when it is small initially. The same is true qualitatively for N > 2, but evidently not so
for N =2 when the factor disappears. Some trajectories in the (δu, δv) phase space for
different U are drawn in figure 5. Obviously, the faster expansion of the trajectories
for N =4 when evolving towards negative δu is associated with higher intermittency
in the tails of the PDFs of δvc. When N =2 the trajectories fall on ellipses, along
which δu can only increase. Therefore no wider tails in the PDFs of δu are observed.

Next, the evolution of PDFs for passive scalar increments and, when N =2,
vorticity increments is considered. For N = 3, PDFs of δT are compared to those
of δvc in figure 6(a) at three times, focusing on the tails of the PDFs. A crossover
behaviour is observed: the tails of PDFs of δT develop slower initially, but overtake
those of δvc at about t = 0.18 and remain more stretched later on. Thus it appears
that the system predicts more intense intermittency for scalars than velocities, once
correlations develop between δu and δv that inhibit the growth in δv (because high
δv causes negative δu to grow less rapidly, whereas no such feedback from δT on
δu occurs). Higher scalar intermittency compared to that of velocity is consistent
with experimental results of, e.g., Antonia, Hopfinger, Gagne & Anselmet (1984). For
N = 2, we consider the evolution of the PDFs of δω. Figure 6(b) shows that the
tails indeed gradually build up as time progresses, attaining an exponential and then
slightly stretched exponential shape, in qualitative agreement with the experimental
results in Paret, Jullien & Tabeling (1999). Thus even when no skewness exists for δu,
negative values of δu yield rapid growth of the tails of δω, while for δv the same does
not occur due to the feedback onto δu. Finally, shown in figure 6(c) is the evolution
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of the flatness factor of δT for different N , which shows that intermittency of δT

increases with N .

4. Conclusions
The advected delta-vee system obtained in Li & Meneveau (2005) has been genera-

lized to arbitrary dimensions, including taking account of parts of the forces that
originate from the incompressibility condition. These parts provide partial cancellation
of the self-amplification of negative longitudinal velocity increments. Implications on
the development, out of Gaussian initial conditions, of intermittency in the PDFs
of velocity increments, passive scalar increments and, in two dimensions, vorticity
increments, have been explored via numerical experimentation. A main finding is that
the intermittency (non-Gaussian, flared-up tails) in the PDFs is stronger in higher
dimensions. In two dimensions the cancellation of self-amplification is complete,
eliminating the generation of non-Gaussian tails. The cause for the intermittency of
passive scalar increments and, in two dimensions, vorticity increments, is shown to be
the same cross-amplification mechanism by which intermittency in transverse velocity
increments is generated, but without the restituting term that slows the growth of
the latter. In two dimensions the PDFs of vorticity increments develop tails that
stretch out wider than Gaussian, and in three dimensions the flatness of transverse
velocity increments predicted from the system is higher than that of longitudinal
ones. Also, the tails of the PDFs of passive scalar increments in three dimensions
reach a higher level than those of transverse velocity increments, after an initial
period of evolution. All these trends are consistent with prior DNS and experimental
results. The fact that the model with SGS effects neglected qualitatively reproduces
many observed intermittency trends suggests that at any given scale �, the trends
towards intermittency only require self-interactions at the same scale and larger,
while interactions with small-scale SGS terms (neglected here) are needed to help
regularize the statistics so that the dynamics become stationary at that scale.

In summary, the results consolidate the view that the advected delta-vee system
may be used to provide relatively simple dynamical explanations for a number of
intermittency trends observed in turbulence. Together with the success of restricted
Euler dynamics in explaining geometric alignment trends, these results show that
considering the evolution in a Lagrangian sense may continue to provide valuable new
insights into natural trends of turbulence. However, as a consequence of neglecting the
contributions from D− and the anisotropic pressure Hessian, inter-scale interactions
and viscous damping, the system does not reach statistically steady state, and thus
no predictions of dependence on length-scale and associated scaling exponents can
be made. More knowledge about the neglected terms is required in order to enable
such more quantitative predictions.
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